Capillary filling in closed end nanochannels.

نویسندگان

  • Vinh Nguyen Phan
  • Nam-Trung Nguyen
  • Chun Yang
  • Pierre Joseph
  • Lyes Djeghlaf
  • David Bourrier
  • Anne-Marie Gue
چکیده

We investigated the interactions between liquid, gas, and solid phases in the capillary filling process of closed-end nanochannels. This paper presents theoretical models without and with absorption and diffusion of gas molecules in the liquid. Capillary filling experiments were carried out in closed-end silicon nanochannels with different lengths. The theoretical and measured characteristics of filling length versus time are compared. The results show that the filling process consists of two stages. The first stage resembles the capillary filling process in an open-end nanochannel. However, a remarkable discrepancy between the experimental results and the theory without gas absorption is observed in the second stage. A closer investigation of the second stage reveals that the dissolution of gas in the liquid is important and can be explained by the model with gas absorption and diffusion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Filling kinetics of liquids in nanochannels as narrow as 27 nm by capillary force.

We report the filling kinetics of different liquids in nanofabricated capillaries with rectangular cross-section by capillary force. Three sets of channels with different geometry were employed for the experiments. The smallest dimension of the channel cross-section was respectively 27, 50, and 73 nm. Ethanol, isopropanol, water and binary mixtures of ethanol and water spontaneously filled nano...

متن کامل

Elastocapillary filling of deformable nanochannels

The capillary filling speed of wetting liquids of varying viscosity and surface tension in hydrophilic nanochannels with an elastic capping layer has been analyzed. The channels, with a height just below 80 nm, are suspended by a thin flexible membrane that easily deforms due to the negative pressure which develops behind the moving meniscus. In the elastocapillary filling of the channels, two ...

متن کامل

Liquid filling method for nanofluidic channels utilizing the high solubility of CO2.

We developed a fabrication method and a liquid filling method for a nano chemical reactor that used Y-shaped nanochannels specially designed for mixing and reacting. In order to reduce the pressure loss and to utilize the characteristics of the nanochannel, inlet microchannels were fabricated just beside the nanochannels. We investigated an initial liquid filling method into the nanochannels th...

متن کامل

Effect of entrapped phase on the filling characteristics of closed-end nanopores.

We investigated the filling dynamics in closed-end capillaries of sub-micron length scale, in which the displacing phase advances at the expense of the entrapped phase. Contrary to common intuition, we reveal that the existence of a displaced phase in a closed-end nano-scale system does not necessarily retard the meniscus advancement over all temporal regimes, unlike what is observed in cases o...

متن کامل

Anomalous capillary filling and wettability reversal in nanochannels.

This work revisits capillary filling dynamics in the regime of nanometric to subnanometric channels. Using molecular dynamics simulations of water in carbon nanotubes, we show that for tube radii below one nanometer, both the filling velocity and the Jurin rise vary nonmonotonically with the tube radius. Strikingly, with fixed chemical surface properties, this leads to confinement-induced rever...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Langmuir : the ACS journal of surfaces and colloids

دوره 26 16  شماره 

صفحات  -

تاریخ انتشار 2010